984 resultados para FIBRILLARY ACIDIC PROTEIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon were examined by a combined biochemical and double-labeling immunocytochemical study for the developmental expression of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). It was found that these two astroglial markers are co-expressed at different developmental stages in vitro. During the phase of cellular maturation (i.e. between days 14 and 34), GFAP levels and GS activity increase rapidly and in parallel. At the same time, the number of immunoreactive cells increase while the long and thick processes staining in early cultures gradually disappear. The present results demonstrate that in this particular cell culture system only one type of astrocytes develops which expresses both GFAP and GS and which attains a relatively high degree of maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glial fibrillary acidic protein (GFAP) is a biomarker candidate indicative of intracerebral hemorrhage (ICH) in patients with symptoms of acute stroke. GFAP is released rapidly in the presence of expanding intracerebral bleeding, whereas a more gradual release occurs in ischemic stroke. In this study the diagnostic accuracy of plasma GFAP was determined in a prospective multicenter approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of E-cadherin and beta-catenin has been widely studied in various human and canine epithelial tumors and has been correlated with dedifferentiation, invasiveness, and metastasis. Choroid plexus tumors (CPTs) are of epithelial origin, and the most important prognostic factor in human medicine is the tumor grade. Limited information is available regarding E-cadherin and beta-catenin expression in human CPTs, and no information is found in the veterinary literature. In the current study, 42 canine CPTs (19 choroid plexus papillomas and 23 choroid plexus carcinomas) were retrospectively reviewed, and the intensity and cellular staining pattern of E-cadherin and beta-catenin were correlated with histological features, paying special attention to grade, invasion, and metastasis. In addition, cytokeratin and glial fibrillary acidic protein (GFAP) antibodies were evaluated as markers for canine CPTs. It was found that loss of E-cadherin and beta-catenin expression was uncommon in canine CPTs. Rather, membranous expression of both molecules was increased in CPTs compared to normal choroid plexus (NCP), regardless of tumor grade. Additionally, aberrant cytoplasmic or nuclear expression of both E-cadherin and beta-catenin was often observed in CPTs. GFAP was frequently expressed in CPTs in contrast to NCP. None of these parameters were correlated with malignancy, and therefore, do not appear to be useful for prognostic information. Nevertheless, a panel of antibodies including E-cadherin and GFAP might be useful to support the diagnosis of CPTs and help to differentiate them from other tumors, such as ependymomas and metastatic epithelial tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrastructural pathology of myelinated axons in mice infected experimentally with the Fujisaki strain of Creutzfeldt-Jakob disease (CJD) virus is characterized by myelin sheath vacuolation that closely resembles that induced in murine spinal cord organotypic cultures by tumor necrosis factor alpha (TNF-alpha), a cytokine produced by astrocytes and macrophages. To clarify the role of TNF-alpha in experimental CJD, we investigated the expression of TNF-alpha in brain tissues from CJD virus-infected mice at weekly intervals after inoculation by reverse transcription-coupled PCR, Northern and Western blot analyses, and immunocytochemical staining. Neuropathological findings by electron microscopy, as well as expression of interleukin 1 alpha and glial fibrillary acidic protein, were concurrently monitored. As determined by reverse transcription-coupled PCR, the expression of TNF-alpha, interleukin 1 alpha, and glial fibrillary acidic protein was increased by approximately 200-fold in the brains of CJD virus-inoculated mice during the course of disease. By contrast, beta-actin expression remained unchanged. Progressively increased expression of TNF-alpha in CJD virus-infected brain tissues was verified by Northern and Western blot analyses, and astrocytes in areas with striking myelin sheath vacuolation were intensely stained with an antibody against murine TNF-alpha. The collective findings of TNF-alpha overexpression during the course of clinical disease suggest that TNF-alpha may mediate the myelin sheath vacuolation observed in experimental CJD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal malnutrition affects every aspect of fetal development. The present study asked the question whether a low-protein diet of the mother could result in motor deficits in the offspring. Further, to examine whether cerebellar pathology was correlated with motor deficits, several parameters of the postnatal development of the cerebellum were assayed. This is especially important because the development of the cerebellum is unique in that the time scale of development is protracted compared with that of the cortex or hippocampus. The most important result of the study is that animals born to protein-deficient mothers showed significant delays in motor development as assessed by rotarod and gait analysis. These animals also showed reduced cell proliferation and reduced thickness in the external granular layer. There was a reduction in the number of calbindin-positive Purkinje cells (PC) and granular cells in the internal granular layer. However, glial fibrillary acidic protein-positive population including Bergmann glia remained unaffected. We therefore conclude that the development of the granular cell layer and the PC is specifically prone to the effects of protein malnutrition potentially due to their protracted developmental period from approximately embryonic day 11 to 13 until about the third postnatal week.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here the protein expression of TRPV1 receptor in axotomized rat retinas and its possible participation in mechanisms involved in retinal ganglion cell (RGC) death. Adult rats were subjected to unilateral, intraorbital axotomy of the optic nerve, and the retinal tissue was removed for further processing. TRPV1 total protein expression decreased progressively after optic nerve transection, reaching 66.2% of control values 21 days after axotomy. The number of cells labeled for TRPV1 in the remnant GCL decreased after 21 days post-lesion (to 63%). Fluoro-jade B staining demonstrated that the activation of TRPV1 in acutely-lesioned eyes elicited more intense neuronal degeneration in the GCL and in the inner nuclear layer than in sham-operated retinas. A single intraocular injection of capsazepine (100 mu M), a TRPV1 antagonist, 5 days after optic nerve lesion, decreased the number of GFAP-expressing Muller cells (72.5% of control values) and also decreased protein nitration in the retinal vitreal margin (75.7% of control values), but did not affect lipid peroxidation. Furthermore, retinal explants were treated with capsaicin (100 mu M), and remarkable protein nitration was then present, which was reduced by blockers of the constitutive and inducible nitric oxide synthases (7-NI and aminoguanidine, respectively). TRPV1 activation also increased GFAP expression, which was reverted by both TRPV1 antagonism with capsazepine and by 7-NI and aminoguanidine. Given that Muller cells do not express TRPV1, we suppose that the increased GFAP expression in these cells might be elicited by TRPV1 activation and by its indirect effect upon nitric oxide overproduction and peroxynitrite formation. We incubated Fluorogold pre-labeled retinal explants in the presence of capsazepine (1 mu M) during 48 h. The numbers of surviving RGCs stained with fluorogold and the numbers of apoptotic cells in the GCL detected with TUNEL were similar in lesioned and control retinas. We conclude that TRPV1 receptor expression decreased after optic nerve injury due to death of TRPV1-containing cells. Furthermore, these data indicate that TRPV1 might be involved in intrinsic protein nitration and Muller cell reaction observed after optic nerve injury. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion protein (PrP(C)) interaction with stress inducible protein 1 (STI1) mediates neuronal survival and differentiation. However, the function of PrP(C) in astrocytes has not been approached. In this study, we show that STI1 prevents cell death in wild-type astrocytes in a protein kinase A-dependent manner, whereas PrP(C)-null astrocytes were not affected by STI1 treatment. At embryonic day 17, cultured astrocytes and brain extracts derived from PrP(C)-null mice showed a reduced expression of glial fibrillary acidic protein (GFAP) and increased vimentin and nestin expression when compared with wild-type, suggesting a slower rate of astrocyte maturation in PrP(C)-null animals. Furthermore, PrP(C)-null astrocytes treated with STI1 did not differentiate from a flat to a process-bearing morphology, as did wild-type astrocytes. Remarkably, STI1 inhibited proliferation of both wild-type and PrP(C)-null astrocytes in a protein kinase C-dependent manner. Taken together, our data show that PrP(C) and STI1 are essential to astrocyte development and act through distinct signaling pathways.(C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid plaques in Alzheimer disease are primarily aggregates of Aβ peptides that are derived from the amyloid precursor protein (APP). Neurotransmitter agonists that activate phosphatidylinositol hydrolysis and protein kinase C stimulate APP processing and generate soluble, non-amyloidogenic APP (APPs). Elevations in cAMP oppose this stimulatory effect and lead to the accumulation of cell-associated APP holoprotein containing amyloidogenic Aβ peptides. We now report that cAMP signaling can also increase cellular levels of APP holoprotein by stimulating APP gene expression in astrocytes. Treatment of astrocytes with norepinephrine or isoproterenol for 24 h increased both APP mRNA and holoprotein levels, and these increases were blocked by the β-adrenergic antagonist propranolol. Treatment with 8-bromo-adenosine 3′,5′-cyclic monophosphate or forskolin for 24 h similarly increased APP holoprotein levels; astrocytes were also transformed into process-bearing cells expressing increased amounts of glial fibrillary acidic protein, suggesting that these cells resemble reactive astrocytes. The increases in APP mRNA and holoprotein in astrocytes caused by cAMP stimulation were inhibited by the immunosuppressant cyclosporin A. Our study suggests that APP overexpression by reactive astrocytes during neuronal injury may contribute to Alzheimer disease neuropathology, and that immunosuppressants can inhibit cAMP activation of APP gene transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

10 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EC (entorhinal cortex) is fundamental for cognitive and mnesic functions. Thus damage to this area appears as a key element in the progression of AD (Alzheimer's disease), resulting in memory deficits arising from neuronal and synaptic alterations as well as glial malfunction. In this paper, we have performed an in-depth analysis of astroglial morphology in the EC by measuring the surface and volume of the GFAP (glial fibrillary acidic protein) profiles in a triple transgenic mouse model of AD [3xTg-AD (triple transgenic mice of AD)]. We found significant reduction in both the surface and volume of GFAP-labelled profiles in 3xTg-AD animals from very early ages (1 month) when compared with non-Tg (non-transgenic) controls (48 and 54%, reduction respectively), which was sustained for up to 12 months (33 and 45% reduction respectively). The appearance of Lambda beta (amyloid beta-peptide) depositions at 12 months of age did not trigger astroglial hypertrophy; nor did it result in the close association of astrocytes with senile plaques. Our results suggest that the AD progressive cognitive deterioration can be associated with an early reduction of astrocytic arborization and shrinkage of the astroglial domain, which may affect synaptic connectivity within the EC and between the EC and other brain regions. In addition, the EC seems to be particularly vulnerable to AD pathology because of the absence of evident astrogliosis in response to A beta accumulation. Thus we can consider that targeting astroglial atrophy may represent a therapeutic strategy which might slow down the progression of AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: An accumulating body of evidence points to the significance of neuroinflammation and immunogenetics in schizophrenia, and an imbalance of cytokines in the central nervous system (CNS) has been suggested to be associated with the disorder. Munc18-overexpressing mice (Munc18-OE) have provided a model for the study of the alterations that may underlie the symptoms of subjects with schizophrenia. The aim of the present study was to elucidate the involvement of neuroinflammation and cytokine imbalance in this model. Methods: Cytokines were evaluated in the cortex and the striatum of Munc18-OE and wild-type (WT) mice by enzyme-linked immunosorbent assay (ELISA). Protein levels of specific microglia and macrophage, astrocytic and neuroinflammation markers were quantified by western blot in the cortex and the striatum of Munc18-OE and WT mice. Results: Each cytokine evaluated (Interferon-gamma (IFN-gamma), Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin-2 (IL-2) and CCL2 chemokine) was present at higher levels in the striatum of Munc18-OE mice than WT. Cortical TNF-alpha and IL-2 levels were significantly lower in Munc18-OE mice than WT mice. The microglia and macrophage marker CD11b was lower in the cortexes of Munc18-OE mice than WT, but no differences were observed in the striatum. Glial Fibrillary Acidic Protein (GFAP) and Nuclear Factor-kappaB (NF-kappa B)p65 levels were not different between the groups. Interleukin-1beta (IL-1 beta) and IL-6 levels were beneath detection limits. Conclusions: The disrupted levels of cytokines detected in the brain of Munc18-OE mice was found to be similar to clinical reports and endorses study of this type for analysis of this aspect of the disorder. The lower CD11b expression in the cortex but not in the striatum of the Munc18-OE mice may reflect differences in physiological activity. The cytokine expression pattern observed in Munc18-OE mice is similar to a previously published model of schizophrenia caused by maternal immune activation. Together, these data suggest a possible role for an immune imbalance in this disorder.